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A method of modeling heat- and mass-transfer problems with boundary
conditions of the second and third kinds is described, Simplified model
circuits are presented,

1. We consider the system of differential transport
equations given in dimensionless parameters [1,2],
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We assume that the normal heat and mass fluxes at any
point of the surface and any moment of time have heen
determined, i.e., the Kirpichev numbers Kiq(Xs; Yg:
Zg; Fo) and Kiy(Xg; Yg; Zg; Fo) are given. In this
case, the boundary conditions of the second kind take
the form
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whence the normal derivatives of T and ® at the sur-
face
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This means that if we construct an electronic model
with two RC networks [3], the electric currents iy and

i; will be given at the boundaries of these networks.
These currents may be expressed as follows:
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where N = n/[ is the dimensionless outward normal.
(Here, n is the normal to the surface of the simulated
object. )

The currents can be created by applying high volt~
ages v and w¢ from a potentiometer across the high

resistances Rp; and Ry
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Since ve » vg and we > ws, iy =Ve/Rhy, 12 = we/Rpy
If Kig and Kip, depend on Fo, the voltages v, and we
must similarly depend on 7g.

If the effect of the temperatures and mass-transfer
potentials at certain points of the body on the flows
through the surface ji and jy, is known, then by means
of a system of amplifiers it is possible automatically
to change the values of the voltages v¢ and we, and
thereby create the necessary i; and i; at the boundary
of the model.

If we create electrical models of the flows and the
boundary layer for a porous body in which the elec-
trical currents iy and i, + (C/(Cy + C))i; are analogs of
jq and jy, it follows that by the simple contact of con-
ductors with the surface of the model we can realize
the boundary conditions of the fourth kind (see [4]):
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2. We consider boundary conditions of the third
kind, when the coefficients of heat and mass transfer

aq and am vary only slightly over a certain period of
time and can be agsumed constant:
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We first construct a model of the boundary condi-
tions for the special case
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Here, the heat flow through the surface (8T /8N)g
is determined only by the difference between the am-
bient and surface temperatures.

We connect to points on the surface of the electri-
cal model the boundary resistances Rp, for network I
and Ry, for network III (the one-dimensional case is
represented in Fig. 1). On the basis of Kirchhoff's
law, we have
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We write (6a) in dimensionless coordinates, intro-
ducing the Biot numbers

Bi, = Rul/Ry and Bi,, = Ry//R, .

In these criteria, the specific resistances R; and R
{Mohm - m) are referred to unit volume of the conduct-
ing medium and Rp, and Rb, (Mohm - mz) are referred
to unit surface. Also introducing the dimensionless
potentials V =v/v*, W =w/w* and the dimensionless
normal, we write the boundary conditions in the form
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These conditions should coincide with the boundary
conditions (6) of the simulated object, for which the
equations
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must be satisfied.

We now turn to the general case of electrical sim-
ulation of the boundary conditions (5). It is not pos-
sible to proceed by constructing a model of these con-
ditions by connecting certain resistances with a constant
potential at the ends, as we did with the boundary condi-
tions (6). However, we can proceed by simulating not
the potentials T and ® but the functions ¢ and ¥ in the
linear combinations

T=ap+bp+T,,
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where ¢ and b are certain constant coefficients.

This transformation does not change the form of
the starting differential equations (1). If, however,
we substitute (8) into the boundary conditions (5),
setting
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(the plus sign corresponds to a, the minus sign to b),
it is seen that the boundary conditions for ¢ and ¥
take a form analogous to conditions (6), and they can
be simulated by connecting resistances Rp; and Ry,
at the boundary. For example, in the one-dimensional
case, the model isrepresented by the circuitin Fig. 1.
Substituting (8) into (1), we obtain the dimension-
less differential equations in ¢ and ¥,
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whgre the new criteria Ay, Aj and A4 are expressed
in terms of ¢, b, Lu, Pn, Ko*, and the criterjon A
is proportional to Fo,
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Fig. 1. Electrical model for simulating the bound-
ary value problem of heat and mass transfer.

Thus, the problem has been reduced to the solu~
tion of Egs. (9) with boundary conditions analogous to
(6). The electrical parameters Ry, Ry, C;, Cy C
should be selected so that
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In conducting the experiment, there is no need to
measure separately the auxiliary variables ¢and §
and then calculate T and ® from Egs. (8). It is sim-
pler to assemble a measuring circuit in which quan-
tities proportional to ¢ and ¥ are summed and thus
measure the quantities T — T¢ and ® — ®, directly.

Obviously, by this means one can find @ and b not
for any similarity criteria Big, Bim, Lu, Pn, Ko and
€, but only for those for which the radicand in (8a) is
positive.

3. The criteria Lu, Pn, and Ko* depend only on the
thermophysical quantities, and, in the model, on Ry,
Ry, C, Cy, Cy v* and w* [3]. To simplify the circuit,
some of the electrical parameters can be set equal to
Zero.

We can take: a) C; = 0; or b) C; =0. (C; and Cy can-
not be simultaneously equal to zero, since, in this
case, the denominator of the Lunumber would vanish. )
For these two special cases, a) and b), we have two
corresponding simplified model circuits, which are
shown for the one-dimensional problem in Fig. 2. The
similarity criteria take the form
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Fig. 2. Special cases of electrical circuits for simulat-
ing problems of heat and mass transfer.



Hence, it is clear that, in circuit a), the Ko* num-
ber does not depend on the distributed electrical pa-
rameters but only on the scales of the electrical quan-
tities v* and w* Therefore, if Ko* is very small, then,
in conducting the experiment, the voltage w should be
amplified before the measurements are made. In cir-
cuit a), the physical significance of the Lu number is
particularly apparent: this criterion is equal to the
ratio of the time constants of the networks R;C and R
R,Co

Knowing the ratio of the specific resistances and
capacitances,

& = PnKo* and % = Lu PnKo*,
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we can select suitable time constants of the two net-
works RyC and R4C + Cj).

The dimensionless heat and mass fluxes are, re-
spectively, equal to
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i.e., the electrical current i; simulates both the heat
flux and the mass flux due to thermal diffusion.

4. It is clear from Fig. 1 that the circuit is sym-
metrical, in the sense that it is possible to exchange
the roles of networks I and II, and if we construct an
electrical model for certain values of the similarity
criteria Foj;, Luj, Pn; and Kof, we find that the same
model can also serve for simulating some other prob-
lem with Similarity criteria Fojy, Luj, Pnjand Koz.

Equations (1) can be written in the form
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The equations for the similarity criteria with sub-
script 2 are written analogously.

We exchange the roles of Tyand ®y; ®;and T, Then,
the indicated pairs of equations will coincide identically,
if the coefficients

Fo, Lu, = (1 4~ Lu, Pn; Koj) Foy; Fo, Ly, P, = Lu, Koj Foy;
Fo, Lu, Koj, = Luy Pny Foy; Fo, (1 4 Lu, Koj Prigy = Lu, Fo,.
coincide.

We introduce the similarity criterion used in ana-
Iytic calculations {1]:
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We consider the analogous duality of the problem for
electrical models (see Fig. 1), in this case, the roles
of networks I and II are interchangeable. In one case,
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In electrical parameters, the criterion ¢ takes the
form
_ R(G+0)
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and all of relations (10) remain in force. The criterion
¢ is equal to the ratio of the time constants for net-
works I and II. The RC network constructed for sim-
ulating the problem is suitable for modeling a field

not only with given Lu number but also with Lu £2 in
the dual problem. By varying the voltages v* and w*,
it is possible to vary the Pn and Ko* numbers, but
only in such a way that their product Fe = Pn Ko* re-
mains constant. The electrical model of heat and mass
transfer is characterized by two similarity criteria,
for example, Lu and £.

NOTATION

t is the temperature, °C; 6is the mass transfer po-
tential, °M; Aq and A, are the thermal and mass con-
ductivities, respectively; € is the ratio of the change
of mass due to phase transformation tothe total change
of mass; I is the characteristic linear dimension; Fo is
the Fourier number; Lu is the Luikov number; Pn is
the Posnov number; Ko* is the modified Kossovich
number; t* and 6* are the characteristic temperatures
and mass transfer potential; 7 is the time; v* and w*
are certain specific potential differences; C{, C,, and
C are in uF/m3; Ri and Ry are the specific resistances
and capacitances of the system of conducting media,
Mohm - m; 7 is the model time, sec; Rp,, Rp, are the
boundary resistances, Mohm -m? he is the normal to
the model surface; T =t/t*; @ = 6/6*. The subscript
s relates to a surface point; ¢ corresponds to a pa-
rameter of the medium.
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